THE MEDIATING ROLE OF CHATBOT INITIAL TRUST IN ENHANCING CUSTOMER LOYALTY, ENGAGEMENT, AND USAGE INTENTION

Luthfi Fakhri Ramadhan, Rifelly Dewi Astuti

Abstract


In the digital era, chatbots have become essential tools for companies to enhance communication efficiency with customers, particularly through popular platforms such as WhatsApp. As the adoption of this technology increases, understanding the factors that shape users initial trust becomes crucial. This study aims to analyze the influence of perceived ease of use, compatibility, performance expectancy, social influence, and perceived risk on initial trust, as well as its impact on chatbot usage intention, customer engagement, customer satisfaction, and customer loyalty. The research model was developed based on an integration of the Technology Acceptance Model (TAM), Unified Theory of Acceptance and Use of Technology (UTAUT), and Diffusion of Innovation (DOI), using a quantitative approach. A total of 223 respondents participated in a survey distributed to users of banking chatbots via WhatsApp in Indonesia. Data were analyzed using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results show that perceived ease of use and social influence have a significant positive effect on initial trust, while compatibility, performance expectancy, and perceived risk do not have a significant effect. However, performance expectancy was found to have a direct and significant influence on chatbot usage intention. Initial trust significantly influences usage intention, customer engagement, customer satisfaction, and customer loyalty. Furthermore, customer satisfaction also has a significant effect on customer loyalty.

Full Text:

PDF

References


Abu Shawar, B., & Atwell, E. (2007). Chatbots: Are they Really Useful? Journal for Language Technology and Computational Linguistics, 22(1), 29–49. https://doi.org/10.21248/jlcl.22.2007.88

Alagarsamy, S., & Mehrolia, S. (2023). Exploring chatbot trust: Antecedents and behavioural outcomes. Heliyon, 9(5), e16074. https://doi.org/10.1016/j.heliyon.2023.e16074

Annisa Wahdiniawati, S., Apriani, A., & Orlando, A. A. (2024). Digital Transformation and E-Commerce Growth: Impact on Consumer Behavior and SMEs. 5(5). https://doi.org/10.38035/dijefa

Araujo, T. (2018). Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183–189. https://doi.org/10.1016/j.chb.2018.03.051

Ayanwale, M. A., & Molefi, R. R. (2024). Exploring intention of undergraduate students to embrace chatbots: from the vantage point of Lesotho. International Journal of Educational Technology in Higher Education, 21(1). https://doi.org/10.1186/s41239-024-00451-8

Bell, E., Bryman, A., & Harley, B. (2019). Business Research Methods (5 ed.). Oxford University Press.

Camilleri, M. A., & Troise, C. (2023). Live support by chatbots with artificial intelligence: A future research agenda. Service Business, 17(1), 61–80. https://doi.org/10.1007/s11628-022-00513-9

Cherniak, K. (2024, Desember 26). Chatbot Statistics: What Businesses Need to Know About Digital Assistants. Master of Code Global. https://masterofcode.com/blog/chatbot-statistics

Chiou, E. K., & Lee, J. D. (2023). Trusting Automation: Designing for Responsivity and Resilience. Human Factors: The Journal of the Human Factors and Ergonomics Society, 65(1), 137–165. https://doi.org/10.1177/00187208211009995

Chung, M., Ko, E., Joung, H., & Kim, S. J. (2020). Chatbot e-service and customer satisfaction regarding luxury brands. Journal of Business Research, 117, 587–595. https://doi.org/10.1016/j.jbusres.2018.10.004

Cooper, D. R., & Schindler, P. S. (2014). Business Research Methods (12 ed.). The McGraw-Hill/Irwin.

Damanpour, F., Sanchez‐Henriquez, F., & Chiu, H. H. (2018). Internal and External Sources and the Adoption of Innovations in Organizations. British Journal of Management, 29(4), 712–730. https://doi.org/10.1111/1467-8551.12296

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008

de Mattos, C. A., & Laurindo, F. J. B. (2017). Information technology adoption and assimilation: Focus on the suppliers portal. Computers in Industry, 85, 48–57. https://doi.org/10.1016/j.compind.2016.12.009

El Malouf, N., & Bahemia, H. (2023). Diffusion of Innovations: A review. In S. Papagiannidis (Ed). Dalam TheoryHub Book.

Faqih, K. M. S. (2016). An empirical analysis of factors predicting the behavioral intention to adopt Internet shopping technology among non-shoppers in a developing country context: Does gender matter? Journal of Retailing and Consumer Services, 30, 140–164. https://doi.org/10.1016/j.jretconser.2016.01.016

Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451–474. https://doi.org/10.1016/S1071-5819(03)00111-3

Florea, D.-L. (2015). A Theory Of Consumer’s Perceived Risk Under The Halo Effect. Management and Marketing Journal, 0(1).

Gabrielova, K., & Buchko, A. A. (2021). Here comes Generation Z: Millennials as managers. Business Horizons, 64(4), 489–499. https://doi.org/10.1016/j.bushor.2021.02.013

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Inexperience and experience with online stores: The importance of tam and trust. IEEE Transactions on Engineering Management, 50(3), 307–321. https://doi.org/10.1109/TEM.2003.817277

Ginting, D. B. (2009). Structural Equation Model (SEM). Media Informatika, 8(3). https://jurnal.likmi.ac.id/Jurnal/11_2009/SEM_dahlia_.pdf

Hair, J. F., Black, W. C., & Anderson, R. E. (2010). Multivariate Data Analysis (7th ed.). Pearson.

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021a). An Introduction to Structural Equation Modeling (hlm. 1–29). https://doi.org/10.1007/978-3-030-80519-7_1

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021b). Evaluation of Reflective Measurement Models (hlm. 75–90). https://doi.org/10.1007/978-3-030-80519-7_4

Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Danks, N. P., & Ray, S. (2021c).

Evaluation of the Structural Model (hlm. 115–138). https://doi.org/10.1007/978-3- 030-80519-7_6

Hair, J. F., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128

Hamid, R. S., & Anwar, S. M. (2019). Structural Equation Modeling (SEM) Berbasis Varian: Konsep Dasar dan Aplikasi dengan Program SmartPLS 3.2.8 dalam Riset Bisnis. PT Inkubator Penulis Indonesia.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747- 014-0403-8

Hoff, K. A., & Bashir, M. (2015). Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(3), 407–434. https://doi.org/10.1177/0018720814547570

Hsu, C. L., & Lin, J. C. C. (2023). Understanding the user satisfaction and loyalty of customer service chatbots. Journal of Retailing and Consumer Services, 71. https://doi.org/10.1016/j.jretconser.2022.103211

Iku-Silan, A., Hwang, G.-J., & Chen, C.-H. (2023). Decision-guided chatbots and cognitive styles in interdisciplinary learning. Computers & Education, 201, 104812. https://doi.org/10.1016/j.compedu.2023.104812

Im, I., Kim, Y., & Han, H.-J. (2008). The effects of perceived risk and technology type on users’ acceptance of technologies. Information & Management, 45(1), 1–9. https://doi.org/10.1016/j.im.2007.03.005

Jang, R. (1980). General purpose of research designs. American journal of hospital pharmacy, 37(3), 398–403. https://www.unboundmedicine.com/medline/citation/7369224/General_purpose_of _research_designs_

Jawa Bendi, K. (2017). Analisis Perilaku Penggunaan Sistem Informasi Akademik Oleh Mahasiswa Keperawatan. Jurnal Sistem dan Teknologi Informasi Komunikasi, 1, 11–22.

Jenneboer, L., Herrando, C., & Constantinides, E. (2022). The Impact of Chatbots on Customer Loyalty: A Systematic Literature Review. Dalam Journal of Theoretical and Applied Electronic Commerce Research (Vol. 17, Nomor 1, hlm. 212–229). MDPI. https://doi.org/10.3390/jtaer17010011

Juquelier, A., Poncin, I., & Hazee, S. (2025). Empathic chatbots: A double-edged sword in customer experiences. Journal of Business Research, 188. https://doi.org/10.1016/j.jbusres.2024.115074

Jyothsna M, P, V. S., & Kryvinska, N. (2024). Exploring the Chatbot usage intention-A mediating role of Chatbot initial trust. Heliyon, 10(12). https://doi.org/10.1016/j.heliyon.2024.e33028

Kaabachi, S., Ben Mrad, S., & O’Leary, B. (2019). Consumer’s initial trust formation in IOB’s acceptance. International Journal of Bank Marketing, 37(2), 507–530. https://doi.org/10.1108/IJBM-12-2017-0270

Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544–564. https://doi.org/10.1016/j.dss.2007.07.001

Kleine, A.-K., Schaffernak, I., & Lermer, E. (2025). Exploring predictors of AI chatbot usage intensity among students: Within- and between-person relationships based on the technology acceptance model. Computers in Human Behavior: Artificial Humans, 3, 100113. https://doi.org/10.1016/j.chbah.2024.100113

Koenig‐Lewis, N., Palmer, A., & Moll, A. (2010). Predicting young consumers’ take up of mobile banking services. International Journal of Bank Marketing, 28(5), 410– 432. https://doi.org/10.1108/02652321011064917

Koksal, M. H. (2016). The intentions of Lebanese consumers to adopt mobile banking. International Journal of Bank Marketing, 34(3), 327–346. https://doi.org/10.1108/IJBM-03-2015-0025

Koufaris, M., & Hampton-Sosa, W. (2004). The development of initial trust in an online company by new customers. Information & Management, 41(3), 377–397. https://doi.org/10.1016/j.im.2003.08.004

Langston, E. M., Hattakitjamroen, V., Hernandez, M., Lee, H. S., Mason, H. C., Louis- Charles, W., Charness, N., Czaja, S. J., Rogers, W. A., Sharit, J., & Boot, W. R. (2025). Exploring artificial intelligence-powered virtual assistants to understand their potential to support older adults’ search needs. Human Factors in Healthcare, 7, 100092. https://doi.org/10.1016/j.hfh.2025.100092

Lee, J. D., & See, K. A. (2004). Trust in Automation: Designing for Appropriate Reliance. Human Factors: The Journal of the Human Factors and Ergonomics Society, 46(1), 50–80. https://doi.org/10.1518/hfes.46.1.50_30392

Loureiro, S. M. C., Cavallero, L., & Miranda, F. J. (2018). Fashion brands on retail websites: Customer performance expectancy and e-word-of-mouth. Journal of Retailing and Consumer Services, 41, 131–141. https://doi.org/10.1016/j.jretconser.2017.12.005

Luo, X., Li, H., Zhang, J., & Shim, J. P. (2010). Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decision Support Systems, 49(2), 222–234. https://doi.org/10.1016/j.dss.2010.02.008

Miller, J., & Khera, O. (2010). Digital Library Adoption and the Technology Acceptance Model: A Cross‐Country Analysis. THE ELECTRONIC JOURNAL OF INFORMATION SYSTEMS IN DEVELOPING COUNTRIES, 40(1), 1–19. https://doi.org/10.1002/j.1681-4835.2010.tb00288.x

Misischia, C. V., Poecze, F., & Strauss, C. (2022). Chatbots in customer service: Their relevance and impact on service quality. Procedia Computer Science, 201(C), 421– 428. https://doi.org/10.1016/j.procs.2022.03.055

Mostafa, R. B., & Kasamani, T. (2022). Antecedents and consequences of chatbot initial trust. European Journal of Marketing, 56(6), 1748–1771. https://doi.org/10.1108/EJM-02-2020-0084

Mulyaningrat, T. E. (2023). Pengaruh Internal dan Eksternal Stimuli dalam Pembelian Impulsif secara Online di Marketplace Indonesia [Tesis]. Universitas Indonesia.

Nguyen, D. M., Chiu, Y. T. H., & Le, H. D. (2021). Determinants of continuance intention towards banks’ chatbot services in vietnam: A necessity for sustainable development. Sustainability (Switzerland), 13(14). https://doi.org/10.3390/su13147625

Ozturk, A. B., Bilgihan, A., Nusair, K., & Okumus, F. (2016). What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. International Journal of Information Management, 36(6), 1350–1359. https://doi.org/10.1016/j.ijinfomgt.2016.04.005

Patnaik, P., & Bakkar, M. (2024). Exploring determinants influencing artificial intelligence adoption, reference to diffusion of innovation theory. Technology in Society, 79, 102750. https://doi.org/10.1016/j.techsoc.2024.102750

Putra, I. (2017). Pengaruh Citra Merek dan Kualitas Produk Terhadap Keputusan Pembelian Iphone Pada Mahasiswa Fakultas Ekonomi Dan Bisnis Universitas Muhammadiyah Sumatera Utara [Skripsi]. Universitas Muhammadiyah Sumatera Utara.

Rogers, E. M. (2003). Diffusion of Innovations. Free Press.

Sarkar, S., Chauhan, S., & Khare, A. (2020). A meta-analysis of antecedents and consequences of trust in mobile commerce. Dalam International Journal of Information Management (Vol. 50, hlm. 286–301). Elsevier Ltd. https://doi.org/10.1016/j.ijinfomgt.2019.08.008

Saunders, M., Lewis, P., & Thornhill, A. (2019). Research Methods for Business Students (8 ed.). Pearson.

Seale, C. (2017). Researching Society and Culture. SAGE Publications Ltd. http://digital.casalini.it/9781526423092

Shahzad, M. F., Xu, S., An, X., & Javed, I. (2024). Assessing the impact of AI-chatbot service quality on user e-brand loyalty through chatbot user trust, experience and electronic word of mouth. Journal of Retailing and Consumer Services, 79. https://doi.org/10.1016/j.jretconser.2024.103867

Shariffuddin, N. S. M., Azinuddin, M., Yahya, N. E., & Hanafiah, M. H. (2023).

Navigating the tourism digital landscape: The interrelationship of online travel sites’ affordances, technology readiness, online purchase intentions, trust, and Eloyalty. Heliyon, 9(8), e19135. https://doi.org/10.1016/j.heliyon.2023.e19135

Singarimbun, M., & Efendi. (1995). Metode Penelitian Survei. PT. Pustaka LP3ES.

Singh, N., & Sinha, N. (2020). How perceived trust mediates merchant’s intention to use a mobile wallet technology. Journal of Retailing and Consumer Services, 52. https://doi.org/10.1016/j.jretconser.2019.101894

Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54–70. https://doi.org/10.1016/j.cogr.2023.04.001

Talwar, S., Dhir, A., Khalil, A., Mohan, G., & Islam, A. K. M. N. (2020). Point of adoption and beyond. Initial trust and mobile-payment continuation intention. Journal of Retailing and Consumer Services, 55. https://doi.org/10.1016/j.jretconser.2020.102086

Tam, J. L. M. (2012). The moderating role of perceived risk in loyalty intentions: An investigation in a service context. Marketing Intelligence and Planning, 30(1), 33– 52. https://doi.org/10.1108/02634501211193903

Thaw, Y. Y., Mahmood, A. K., & Dominic, P. D. D. (2009). A Study on the Factors That Influence the Consumers’ Trust on E-commerce Adoption. Article in International Journal of Computer Science and Information Security, 4(1). https://www.researchgate.net/publication/44926471

Thusi, P., & Maduku, D. K. (2020). South African millennials’ acceptance and use of retail mobile banking apps: An integrated perspective. Computers in Human Behavior, 111, 106405. https://doi.org/10.1016/j.chb.2020.106405

Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540

Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926

Weizenbaum, J. (1966). ELIZA—a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45. https://doi.org/10.1145/365153.365168

White, I. (2020). Building Institutional Capacity For Mainstreaming E-Learning Innovations: A New Methodology For A Wicked Problem [Thesis]. Flinders University.

Widjaja, A., Astuti, W., & Manan, A. (2019). The Relationship between Customer Satisfaction and Loyalty: Evidence on Online Transportation Services in Indonesia. International Journal of Advances in Scientific Research and Engineering, 5(4), 214–222. https://doi.org/10.31695/IJASRE.2019.33166

Yang, F., & Shen, F. (2018). Effects of Web Interactivity: A Meta-Analysis. Communication Research, 45(5), 635–658. https://doi.org/10.1177/0093650217700748

Yao, E., Guo, D., Liu, S., & Zhang, J. (2024). The role of technology belief, perceived risk and initial trust in users’ acceptance of urban air mobility: An empirical case in China. Multimodal Transportation, 3(4), 100169. https://doi.org/10.1016/j.multra.2024.100169

Yau, K. L. A., Saad, N. M., & Chong, Y. W. (2021). Artificial intelligence marketing (AIM) for enhancing customer relationships. Dalam Applied Sciences (Switzerland) (Vol. 11, Nomor 18). MDPI. https://doi.org/10.3390/app11188562

Zemčik, T. (2019). A Brief History of Chatbots. DEStech Transactions on Computer Science and Engineering, aicae. https://doi.org/10.12783/dtcse/aicae2019/31439

Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760–767. https://doi.org/10.1016/j.chb.2010.01.013




DOI: https://doi.org/10.31846/jae.v13i3.970

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

e-Jurnal Apresiasi Ekonnomi Indexed by: